Advertisements
Advertisements
Question
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
Options
(–∞, –9] ≈ [3, ∞]
[–3, ∞)
(–∞, 9]
(–∞, –3] ≈ [9, ∞]
MCQ
Fill in the Blanks
Solution
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in (–∞, –3] ≈ [9, ∞].
Explanation:
Let three terms of G.P. are: `a/r, a, ar`
Product = 27
⇒ `a/r.a.ar` = 27
⇒ a = 3
Sum = S ...(Given)
⇒ `a/r + a + ar` = S
⇒ `3/r + 3 + 3r` = S
⇒ `3/r + 3r` = S – 3
⇒ 3r2 – (S – 3)r + 3 = 0
For real r,
b2 – 4ac ≥ 0
(S – 3)2 – 4 × 3 × 3 ≥ 0
S2 – 6r + 9 – 36 ≥ 0
S2 – 6r – 27 ≥ 0
(S – 9)(S + 3) ≥ 0
⇒ –∞ < S ≥ –3
or 9 ≤ S < ∞
shaalaa.com
Is there an error in this question or solution?