Advertisements
Advertisements
Question
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
Options
`425/216`
`429/216`
`288/125`
`280/125`
Solution
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to `underlinebb(288/125)`.
Explanation:
Let P = `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + ....` ...(i)
⇒ `P/6 = 1/6 + 5/6^2 + 12/6^3 + 22/6^4 + ....` ...(ii)
Equation (i) – Equation (ii), we get
`P - P/6 = 1 + 4/6 + 7/6^2 + 10/6^3 + 13/6^4 + ...`
⇒ `(5P)/6 = 1 + 4/6 + 7/6^2 + 10/6^3 + 13/6^4 + ....` ...(iii)
⇒ `(5P)/6^2 = 1/6 + 4/6^2 + 7/6^3 + 10/6^4 + ....` ...(iv)
Equation (iii) – Equation (iv), we get
`(5P)/6 - (5P)/6^2 = 1 + 3/6 + 3/6^2 + 3/6^3 + 3/6^4 + ...`
⇒ `(5/6)^2P = 1 + 3(1/6 + 1/6^2 + 1/6^3 + ...)`
⇒ `(5/6)^2P = 1 + 3((1/6)/(1 - 1/6))`
⇒ `(5/6)^2P = 1 + 3/5 = 8/5`
⇒ P = `8/5 xx 36/25 = 288/125`