Advertisements
Advertisements
Question
The sum of the infinite series `x + (1 + 2)/(2!) x^2 + (1 + 2 + 3)/(3!) x^3 +` .... equals
Options
`1/2 x(x + 1)e^x`
`1/2 x(x + 2)e^x`
`1/2 x(2x + 1)e^x`
`x(x + 2)e^x`
MCQ
Solution
`1/2 x(x + 2)e^x`
Explanation:
Let `f(x) = 1/2 (x^2 + 2x) e^x` ⇒ `f(0)` = 0
`f"'"(x) = 1/2(2x + 2) e^x + 1/2 (x^2 + 2x) e^x = 1/2 (2x + 2) e^x + f(x)`
⇒ `f"'"(0)` = 1
`f"''"(x) = 1/2 . 2.e^x + 1/2 (2x + 2)e^x` + f"(x)
`f"''"(0)` = 1 + 1 + 1 = 1 + 2
By Taylor series.
`f(x) = f(0) + f"'"(0)`
`x + (f"''"(0))/(2!) x^2 + (f"''"(x))/(3!) x^3 + ... + (f"''"(x))/(n!) x^n + ...`
∴ `f(x) = 0 + 1.x + (1 + 2)/(2!) x^2 + (1 + 2 + 3)/(3!) x^2 + ...`
`1/2 x(x + 2)e^x = x + (1 + 2)/(2!) x^2 + (1 + 2 + 3)/(3!) x^3 + ...`
shaalaa.com
Time Series Analysis
Is there an error in this question or solution?