English

The sum of the series 1x+1+2x2+1+22x4+1+....+2100x2100+1 when x = 2 is ______. -

Advertisements
Advertisements

Question

The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.

Options

  • `1 - 2^101/(4^101 - 1)`

  • `1 + 2^101/(4^101 - 1)`

  • `1 - 2^100/(4^100 - 1)`

  • `1 + 2^101/(4^101 - 1)`

MCQ
Fill in the Blanks

Solution

The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is `underlinebb(1 - 2^101/(4^101 - 1))`.

Explanation:

Adding and subtracting `1/(1 - x)`

∴ S = `1/(1 - x) - 1/(1 - x) + 1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + .... + 2^100/(x^(2^100 + 1)`

∴ S = `1/(x - 1) + 2/(1 - x^2) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + .... + 2^100/(x^(2^100) + 1)`

∴ S = `1/(x - 1) - 2^101/(x^(2^101) - 1)`

For x = 2 ⇒ S = `1 - 2^101/(2^(2^101) - 1)` = `1 - 2^101/(4^101 - 1)`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×