Advertisements
Advertisements
Question
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is ______.
Options
`1 - 2^101/(4^101 - 1)`
`1 + 2^101/(4^101 - 1)`
`1 - 2^100/(4^100 - 1)`
`1 + 2^101/(4^101 - 1)`
MCQ
Fill in the Blanks
Solution
The sum of the series `1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + ...... + 2^100/(x^(2^100) + 1)` when x = 2 is `underlinebb(1 - 2^101/(4^101 - 1))`.
Explanation:
Adding and subtracting `1/(1 - x)`
∴ S = `1/(1 - x) - 1/(1 - x) + 1/(x + 1) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + .... + 2^100/(x^(2^100 + 1)`
∴ S = `1/(x - 1) + 2/(1 - x^2) + 2/(x^2 + 1) + 2^2/(x^4 + 1) + .... + 2^100/(x^(2^100) + 1)`
∴ S = `1/(x - 1) - 2^101/(x^(2^101) - 1)`
For x = 2 ⇒ S = `1 - 2^101/(2^(2^101) - 1)` = `1 - 2^101/(4^101 - 1)`
shaalaa.com
Is there an error in this question or solution?