Advertisements
Advertisements
Question
The two adjacent sides of a parallelogram are `2hati-4hatj-5hatk and 2 hati+2hatj+3hatj` . Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.
Solution
The two adjacent sides of a parallelogram are ` 2hati-4hatj-5hatk and 2 hati+2hatj+3hatj`
suppose `veca=2hati-4hatj-5hatk and vecb=2 hati+2hatj+3hatj`
Then any one diagonal of a parallelogram is `vecP=veca+vecb`
`vecP=veca+vecb`
`=2hati-4hatj-5hatk + 2 hati+2hatj+3hatj`
`=4hati-2hatj-2hatk`
Therefore, unit vector along the diagonal is `vecp/|vecp|=(4hati-2hatj-2hatk)/sqrt(16+4+4)=(2hati-hatj-hatk)/sqrt(6)`
Another diagonal of a parallelogram is `vecP=vecb-veca`
`vecP=vecb-veca`
`=2hati+2hatj+3hatk-2hati+4hatj+5hatk`
`=6hatj+8hatk`
Therefore, unit vector along the diagonal is `vecp/|vecp|=(6hatj+8hatk)/sqrt(36+64)=(6hatj+8hatk)/sqrt(10)=(3hatj+4hatk)/5`
Now
`vecPxxvecP=|[hati,hatj,hatk],[4,-2,-2],[0,6,8]|`
`=hati(-16+12)-hatj(32-0)+hatk(24-0)`
`=-4hati-32hatj+24hatk`
Area of parallelogram= `|vecpxxvecp|/2=sqrt(16+1024+576)/2=sqrt(1616)/2=4sqrt(101)/2=2sqrt101 `