Advertisements
Advertisements
Question
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Options
1
0
– 1
`pi/4`
MCQ
Solution
0
Explanation:
`tan^-1 ((2x - 1)/(1 + x - x^2)) = tan^-1 [(x + (x - 1))/(1 - x(x - 1))]`
= `tan^-1x + tan^-1 (x - 1)` ......(1)
`[because tan^-1x + tan^-1y = tan^-1 ((x + y)/(1 - xy))]`
∴ Let, I = `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx`
= `[int_0^1 tan^-1x + tan^-1 (x - 1)]`
= `[because int_0^a f(x) dx = int_0^a f(a - x)] dx`
= `int_0^1 [- tan^-1 (x - 1) - tan^-1 x] dx`
∴ I = `- int_0^1 [tan^-1 x + tan^-1 (x - 1)] dx` ......(2)
Adding (1) and (2)
2I = 0 or I = 0
shaalaa.com
Is there an error in this question or solution?