Advertisements
Advertisements
Question
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)
Options
3
5
4
7
MCQ
Fill in the Blanks
Solution
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to 7.
(where [.] denotes greatest integer function)
Explanation:
Given, `int_-1^3 (|x - 2| + [x]) dx`
= `int_-1^0 {-(x - 2) - 1} dx + int_0^1 -(x - 2) + 0 dx + int_1^2 {- (x - 2) + 1} dx + int_2^3 (x - 2) + 2 dx`
= `int_1^0 (-x + 1) dx + int_0^1 (-x + 2) dx + int_1^2 (-x + 3) dx + int_2^3 (x) dx`
= `[(-x^2)/2 + x]_-1^0 + [(-x^2)/2 + 2x]_0^1 + [(-x^2)/2 + 3x]_1^2 + [x^2/2]_2^3`
= `3/2 + 3/2 + (-2 + 6) - ((-1)/2 + 3) + (9/2 - 4/2)`
= `3 + 4 - 5/2 + 5/2`
= 7
shaalaa.com
Algebra of Functions
Is there an error in this question or solution?