Advertisements
Advertisements
Question
The value of `int_1^3 dx/(x(1 + x^2))` is ______
Options
`1/2log(9/5)`
`1/2log(5/9)`
`1/2log(4/9)`
`1/2log(9/4)`
MCQ
Fill in the Blanks
Solution
The value of `int_1^3 dx/(x(1 + x^2))` is `underline(1/2log(9/5))`.
Explanation:
`int_1^3 dx/(x(1 + x^2)) = int_1^3 (1/x - 1/(1 + x^2))dx`
= `int_1^3 1/x dx - 1/2int_1^3 (2x)/(1 + x^2)dx`
= `[logx]_1^3 - 1/2[log(1 + x^2)]_1^3`
= `log3 - log1 - 1/2(log10 - log2)`
= `log3 - 1/2log5`
= `1/2log3^2 - 1/2 log5`
= `1/2(log9 - log5)`
= `1/2log(9/5)`
shaalaa.com
Is there an error in this question or solution?