Advertisements
Advertisements
Question
The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.
Options
1
–1
0
does not exist
MCQ
Fill in the Blanks
Solution
The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is 1.
Explanation:
`lim_(x rightarrow 0) (sqrt(1 + x^2) - sqrt(1 - x^2))/x^2.(sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`
= `lim_(x rightarrow 0) (1 + x^2 - 1 + x^2)/(x^2(sqrt(1 + x^2) + sqrt(1 - x^2))`
= `2/(sqrt(1) + sqrt(1))`
= `2/2`
= 1
shaalaa.com
Concept of Limits
Is there an error in this question or solution?