Advertisements
Advertisements
Question
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is ______
Options
abcd
(abcd)1/4
`1/4`abcd
`1/4`
MCQ
Fill in the Blanks
Solution
The value of `lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}` is (abcd)1/4
Explanation:
`lim_{x→0}{(a^x + b^x + c^x + d^x)/4}^{1/x}`
= `lim_{x→0}{1 + (a^x + b^x + c^x + d^x - 4)/4}^{1/x}`
= `lim_{x→0}{1 + ((a^x - 1) + (b^x - 1) + (c^x - 1) + (d^x - 1))/4}^{1/x}`
= `e^{lim_{x→0}((a^x - 1)/(4x) + (b^x - 1)/(4x) + (c^x - 1)/(4x) + (d^x - 1)/(4x)))`
= `e^{log("abcd")^{1/4}} = ("abcd")^{1/4}`
shaalaa.com
Limits of Exponential and Logarithmic Functions
Is there an error in this question or solution?