English

The value of limx→0[ddx∫0x2sec2xdxddx(xsinx)] is equal to -

Advertisements
Advertisements

Question

The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to

Options

  • 0

  • 1

  • 2

  • 3

MCQ

Solution

0

Explanation:

`lim_(x -> 0) (d/dx int_0^(x^2) sec^2 x  dy)/(d/(dx) (x sin x))`

= `lim_(x -> 0) (tan  x^2)/(sin x + x cos x)`

= `lim_(x -> 0) ((tan  x^2)/x^2 xx x^2)/(x(sinx/x + cos x)`

= `1.0/((1 + 1))`

= 0

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×