Advertisements
Advertisements
Question
The value of `lim_(x rightarrow 0) 1/x^3 int_0^x (t log (1 + t))/(t^4 + 4) dt` is ______.
Options
0
`1/12`
`1/24`
`1/64`
MCQ
Fill in the Blanks
Solution
The value of `lim_(x rightarrow 0) 1/x^3 int_0^x (t log (1 + t))/(t^4 + 4) dt` is `underlinebb(1/12)`.
Explanation:
Given, `lim_(x rightarrow 0) 1/x^3 int_0^x (t log (1 + t))/(t^4 + 4) dt`
`\implies lim_(x rightarrow 0) (int_0^x (t log (1 + t))/(t^4 + 4) dt)/x^3`
Using L' Hospital's rule, we get
`lim_(x rightarrow 0) ((x log (1 + x))/(x^4 + 4))/(3x^2)`
= `lim_(x rightarrow 0) (log(1 + x))/(3x) . 1/(x^4 + 4)`
= `1/3 . 1/4`
= `1/12`
shaalaa.com
Definite Integral as Limit of Sum
Is there an error in this question or solution?