Advertisements
Advertisements
Question
The value of `tan^-1 1/3 + tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/8` is ______.
Options
`(11 pi)/5`
`pi/4`
`pi`
`(3pi)/4`
MCQ
Fill in the Blanks
Solution
The value of `tan^-1 1/3 + tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/8` is `underline(pi/4)`.
Explanation:
We have,
`tan^-1 1/3 + tan^-1 1/5 + tan^-1 1/7 + tan^-1 1/8`
`=> tan^-1 ((1/3 + 1/5)/(1 - 1/3 xx 1/5)) + tan^-1 ((1/7 + 1/8)/(1 - 1/7 xx 1/8)) ...(because tan^-1 x + tan^-1 y = tan^-1 ((x + y)/(1 - "xy")))`
`= tan^-1 (8/14) + tan^-1 (15/55)`
`= tan^-1 (4/7) + tan^-1 (3/11)`
`= tan^-1 ((4/7 + 3/11)/(1 - 4/7 xx 3/11))`
`= tan^-1 ((44 + 21)/(77 - 12))`
`= tan^-1 (65/65)`
`= tan^-1 (1) = pi/4`
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?