Advertisements
Advertisements
Question
The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.
Options
cosα + cosβ + cosγ
cosα cosβ + cosβ cosγ + cosγ cosα
–1
0
MCQ
Fill in the Blanks
Solution
The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to 0.
Explanation:
Δ = `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|`
The above determinant is obtained by multiplying two zero determinants:
Δ = `|(cosα, sinα, 0),(cosβ, sinβ, 0),(cosγ, sinγ, 0)||(cosα, sinα, 0),(cosβ, sinβ, 0),(cosγ, sinγ, 0)|` = 0
∴ Δ = 0
shaalaa.com
Is there an error in this question or solution?