English

The value of the determinant βαγααβγβαγβγ|1cos(β-α)cos(γ-α)cos(α-β)1cos(γ-β)cos(α-γ)cos(β-γ)1| is equal to ______. -

Advertisements
Advertisements

Question

The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.

Options

  • cosα + cosβ + cosγ

  • cosα cosβ + cosβ cosγ + cosγ cosα

  • –1

  • 0

MCQ
Fill in the Blanks

Solution

The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to 0.

Explanation:

Δ = `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|`

The above determinant is obtained by multiplying two zero determinants:

Δ = `|(cosα, sinα, 0),(cosβ, sinβ, 0),(cosγ, sinγ, 0)||(cosα, sinα, 0),(cosβ, sinβ, 0),(cosγ, sinγ, 0)|` = 0

∴ Δ = 0

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×