Advertisements
Advertisements
Question
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
Options
6
0
3
4
Solution
6
Explanation:
Let I = `int_(1/3)^1 (x - x^3)^(1/3)/x^4`
Put `x = sin theta, dx = cos theta d theta`
When `x = 1/3, theta = sin^-1 1/3`, When `x = 1, theta = pi/2`
∴ I = `int_(sin^-1 1/3)^(pi/2) (sin theta - sin^3 theta)^(1/3)/(sin^4 theta) cos theta d theta`
= `int_(sin^-1 1/3)^(pi/2) ([sin 1/3 theta(1 - sin^2 theta)]^(1/3))/theta cos theta d theta`
= `int_(sin^-1 1/3)^(pi/2) (sin theta xx cos^2 theta)^(1/3)/(sin^4 theta) cos theta d theta`
= `int_(sin^-1 1/3)^(pi/2) (sin^(1/3) theta xx cos^(2/3) theta cos theta)/(sin^4 theta) d theta`
= `int_(sin^-1 1/3)^(pi/2) (sin^(1/3) theta * cos^(5/3) theta)/(sin^2 theta sin^2 theta) d theta`
= `int_(sin^-1 1/3)^(pi/2) (cos^(5/3) theta)/(sin^(5/3) theta) "cosec"^2theta d theta`
= `int_(sin^-1 1/3)^(pi/2) cot^(5/3) theta "cosec"^2 theta d theta`
Put `cot theta = t, - "cosec"^2theta d theta = dt`
When `theta = sin^-1 1/3` or `sin theta = 1/3, cot theta = 2sqrt(2)`
∴ `t = 2sqrt(2) = sqrt(8)`, When `theta = pi/2, cot theta = 0`
I = `int_sqrt(8)^0 t^(5/3) dt = int_0^sqrt(8) t^(5/3) dt`
= `3/8 (t^(8/3))_0^sqrt(8) = 3/8 (sqrt(8))^(8/3)`
= `3/8 (8)^(8/6) = 3/8 * (8)^(4/3) = 3/8 xx 16` = 6