Advertisements
Advertisements
Question
The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is ______.
Options
`-hati + hatj + hatk`
`3(-hati + hatj + hatk)`
`2(-hati + hatj + hatk)`
`hati - hatj + hatk`
Solution
The vector `vecp` perpendicular to the vectors `veca = 2hati + 3hatj - hatk` and `vecb = hati - 2hatj + 3hatk` and satisfying the condition `vecp.(2hati - hatj + hatk)` = –6 is `underlinebb(3(-hati + hatj + hatk))`.
Explanation:
`veca xx vecb = |(hati, hatj, hatk),(2, 3, -1),(1, -2, 3)|`
`veca xx vecb = hati(9 - 2) - hatj(6 + 1) + hatk(-4 - 3)`
= `7(hati - hatj - hatk)`
`vecp = λ(hati - hatj - hatk)`
`vecp.(2hati - hatj + hatk) = λ(hati - hatj - hatk).(2hati - hatj + hatk)`
= –6
λ(2 + 1 – 1) = –6
⇒ λ = –3
So `vecp = -3(hati - hatj - hatk)`
`vecp = 3(-hati + hatj + hatk)`