Advertisements
Advertisements
Question
There are 18 guests at a dinner party. They have to sit 9 guests on either side of a long table, three particular persons decide to sit on one side and two others on the other side. In how many ways can the guests to be seated?
Solution
Let A and B be two sides of the table 9 guests sit on either side of the table in 9! × 9! ways.
Out of 18 guests, three particular persons decide to sit namely inside A and two on the other side B. remaining guest = 18 – 3 – 2 = 13.
From 13 guests we can select 6 more guests for side A and 7 for the side.
Selecting 6 guests from 13 can be done in 13C6 ways.
Therefore total number of ways the guest to be seated = 13C6 × 9! × 9!
`= (13!)/(6!(13 - 6)!) xx 9! xx 9!`
`= (13!)/(6! xx 7!) xx 9! xx 9!`
APPEARS IN
RELATED QUESTIONS
How many code symbols can be formed using 5 out of 6 letters A, B, C, D, E, F so that the letters
- cannot be repeated
- can be repeated
- cannot be repeated but must begin with E
- cannot be repeated but end with CAB.
If nPr = 720(nCr), then r is equal to:
The number of 3 letter words that can be formed from the letters of the word ‘NUMBER’ when the repetition is allowed are:
If `""^15"C"_(2"r" - 1) = ""^15"C"_(2"r" + 4)`, find r
If `""^(("n" + 1))"C"_8 : ""^(("n" - 3))"P"_4` = 57 : 16, find the value of n
How many different selections of 5 books can be made from 12 different books if, Two particular books are always selected?
There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees a particular teacher is included?
7 relatives of a man comprises 4 ladies and 3 gentlemen, his wife also has 7 relatives; 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man’s relative and 3 of the wife’ s relatives?
Choose the correct alternative:
Number of sides of a polygon having 44 diagonals is ______
Choose the correct alternative:
In a plane there are 10 points are there out of which 4 points are collinear, then the number of triangles formed is