Advertisements
Advertisements
Question
To conclude the congruency of triangles, mark the required information in the following figure with reference to the given congruency criterion
Solution
In the given triangles two angles of one triangle is equal to two angles of the other triangles.
To satisfy the ASA criterion included side of two angles must be equal.
APPEARS IN
RELATED QUESTIONS
In Fig, can you use the ASA congruence rule and conclude that ∆AOC ≅ ∆BOD?
In the figure, ∠TMA ≡∠IAM and ∠TAM ≡ ∠IMA. P is the midpoint of MI and N is the midpoint of AI. Prove that ΔPIN ~ ΔATM
For the given pair of triangles state the criterion that can be used to determine the congruency?
In the given figure ray AZ bisects ∠BAD and ∠DCB, prove that AB = AD
Two triangles are congruent, if two angles and the side included between them in one of the triangles are equal to the two angles and the side included between them of the other triangle. This is known as the ______.
In the given figure, AD ⊥ BC and AD is the bisector of angle BAC. Then, ∆ABD ≅ ∆ACD by RHS.
In the given pairs of triangles of figure, applying only ASA congruence criterion, determine which triangles are congruent. Also, write the congruent triangles in symbolic form.
In the given pairs of triangles of figure, applying only ASA congruence criterion, determine which triangles are congruent. Also, write the congruent triangles in symbolic form.
In the given pairs of triangles of figure, applying only ASA congruence criterion, determine which triangles are congruent. Also, write the congruent triangles in symbolic form.
In the given pairs of triangles of figure, applying only ASA congruence criterion, determine which triangles are congruent. Also, write the congruent triangles in symbolic form.