Advertisements
Advertisements
Question
Triangle ABC is an isosceles triangle in which AB = AC = 13 cm and BC = 10 cm. AD is
perpendicular to BC. If CE = 8 cm and EF ⊥ AB, find:
i)`"area of ADC"/"area of FEB"` ii)`"area of ΔAFEB"/"area of ΔABC"`
Sum
Solution
(i) AB = AC(Given)
∴ ∠FBE = ∠ACD
∠BFE = ∠ADC
∆EFB ~ ∆ADC (AA similarity)
`∴(ar(Δ"ADC"))/(ar(Δ"EFB"))=(("AC")/("BE"))^2`
`=(("AC")/("BC"+"CE"))^2`
`(13/18)^2=169/324` ................................(1)
ii) Similarly, it can be proved that ∆ADB ~ ∆EFB
`∴(ar(Δ"ADB"))/(ar(Δ"EFG")`= `(("AB")/("BE"))^2`
`=(13/18)^2`
`=169/324` .......................... (2)
From (1) and (2),
`(ar(Δ"ABC"))/(ar(Δ"EFB"))=(169+169)/324=338/324=169/162`
∴ar(∆EFB) : ar(∆ABC) = 162 : 169
shaalaa.com
Axioms of Similarity of Triangles
Is there an error in this question or solution?