Advertisements
Advertisements
Question
Two vectors `vec"A"` and `vec"B"` have equal magnitudes. If magnitude of `vec"A"` + `vec"B"` is equal to two times the magnitude of `vec"A"` - `vec"B"`, then the angle between `vec"A"` and `vec"B"` will be :
Options
`sin^-1 (3/5)`
`sin^-1 (1/3)`
`cos^-1 (3/5)`
`cos^-1 (1/3)`
Solution
`bb(cos^-1 (3/5))`
Explanation:
Given `|vec"A" +vec"B"| = 2 |vec"A" - vec"B"|` ...(1)
Let angle between `vec"A"` and `vec"B"` be `theta`.
|A| = |B|
Magnitude of resultant of two vectors is given by
`|vec"R"| = sqrt("A"^2 + "B"^2 + 2"AB" costheta)`
`|vec"A" + vec"B"| = sqrt("A"^2 + "B"^2 + 2"AB" costheta)`
`|vec"A" - vec"B"| = sqrt("A"^2 + "B"^2 + 2"AB" cos(pi -theta)`
= `sqrt("A"^2 + "B"^2 + 2"AB" costheta)`
Substituting values of `|vec"A" + vec"B"|` and `|vec"A" - vec"B"|` equation (1), we get :
`sqrt("A"^2 + "B"^2 + 2"AB" costheta)`
= `2sqrt("A"^2 + "B"^2 - 2"AB" costheta)`
On squaring both the sides
`("A"^2 + "B"^2 + 2"AB" costheta) = 4("A"^2 + "B"^2 - 2"AB" costheta)`
As |A| = |8| ⇒ A = B
2 + 2 cos θ = 4 (2 – 2 cos θ)
6 = 10 cos θ
cos θ = `6/10`
∴ cos θ = `3/5` ⇒ θ cos-1 `(3/5)`