Advertisements
Advertisements
Question
Unit vector perpendicular to the plane of the triangle ABC with position vectors `veca, vecb, vecc` of the vertices A, B, C is ______.
Options
`((veca xx vecb + vecb xx vecc + vecc xx veca))/Δ`
`((veca xx vecb + vecb xx vecc + vecc xx veca))/(2Δ)`
`((veca xx vecb + vecb xx vecc + vecc xx veca))/(4Δ)`
`(2(veca xx vecb + vecb xx vecc + vecc xx veca))/Δ`
Solution
Unit vector perpendicular to the plane of the triangle ABC with position vectors `veca, vecb, vecc` of the vertices A, B, C is `underlinebb(((veca xx vecb + vecb xx vecc + vecc xx veca))/(2Δ))`.
Explanation:
= `((veca - vecb) xx (veca - vecc))/|(veca - vecb) xx (veca - vecc)|`
= `((veca - vecb) xx (veca - vecc))/(2Δ)`
= `(-veca xx vecc - vecb xx veca + vecb xx vecc)/(2Δ)`
= `(veca xx vecb + vecb xx vecc + vecc xx veca)/(2Δ)`