Advertisements
Advertisements
Question
Using properties of determinant prove that
`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc
Sum
Solution
Let Δ = `|(b+c , a , a), (b , c+a, b), (c, c, a+b)|`
R1 → R1 - R2 - R3
Δ = `|(0 ,-2c ,-2b), (b , c+a, b), (c, c, a+b)|`
Expending R1
Δ=`0|(c+a, b),(c, a+b)| -(-2c)|(b, b),(c, a+b)| +(-2b)|(b, c+a),(c, c)|`
= 2c(ab + b2 - bc) - 2b(bc - c2 - ac)
= 2abc + 2cb2 - 2bc2 - 2b2c + 2bc2 + 2abc
= 4abc
shaalaa.com
Is there an error in this question or solution?