English

Using Properties of Determinant Prove that ∣ ∣ ∣ ∣ B + C a A B C + a B C C a + B ∣ ∣ ∣ ∣ = 4abc -

Advertisements
Advertisements

Question

Using properties of determinant prove that 

`|(b+c , a , a), (b , c+a, b), (c, c, a+b)|` = 4abc

Sum

Solution

Let Δ = `|(b+c , a , a), (b , c+a, b), (c, c, a+b)|`

R1 → R1 - R2 - R3  

Δ = `|(0 ,-2c ,-2b), (b , c+a, b), (c, c, a+b)|`

Expending R1

Δ=`0|(c+a, b),(c, a+b)| -(-2c)|(b, b),(c, a+b)| +(-2b)|(b, c+a),(c, c)|`

= 2c(ab + b2 - bc) - 2b(bc - c2 - ac)

= 2abc + 2cb2 - 2bc2 - 2b2c + 2bc2 + 2abc

= 4abc

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×