Advertisements
Advertisements
Question
Using the factor Theorem, show that:
2x + 7 is a factor 2x3 + 5x2 − 11x – 14. Hence, factorise the given expression completely.
Sum
Solution
f(x) = 2x3 + 5x2 - 11x - 14
2x + 7 = 0 ⇒ x = `((-7)/2)`
Remainder = `f((-7)/2)`
`= 2((-7)/2)+5((-7)/2)^2-11((-7)/2)-14`
= `(-343)/4 + 245/4 + 77/2 - 14`
= `(-49)/2 + 77/2 -14`
= `28/2 -14`
= 14 - 14 = 0
Hence, (2x + 7) is a factor of f(x).
Now, we have:
∴ `2x^3+5x^2-11x-14 = (2x + 7) (x^2- x-2)`
= `(2x + 7)(x^2 - 2x + x -2 )`
= `(2x + 7 )[x(x-2)+(x-2)]`
= `(2x + 7)(x-2)(x+1)`
shaalaa.com
Is there an error in this question or solution?