English

Using truth table prove that: p→(q∨r)≡(p→q)∨(p→r) -

Advertisements
Advertisements

Question

Using truth table prove that:

`p → (q ∨ r) ≡ (p → q) ∨ (p → r)`

Chart

Solution

To prove: `p → (q ∨ r) ≡ (p → q) ∨ (p → r)`

Truth table:

p q r q ∨ r `bb(p → q)` `bb(p → r)` `bb((p → q) ∨ (p → r))` `bb(p → (q ∨ r))`
1 2 3 4 5 6 7 8
T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F F
F T T T T T T T
F T F T T T T T
F F T T T T T T
F F F F T T T T

From column 7 and 8

 `p → (q ∨ r) ≡ (p → q) ∨ (p → r)`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×