Advertisements
Advertisements
Question
Verify that `("x"+"y")xx"z"="x"xx"z + y"xx"z",if`
`"x"=2," y"=4/5and "z"=3/(-10)`
Solution
`"x"=2," y"=4/5and "z"=3/(-10)`
Using, `("x"+"y")xx"z"="x"xx"z" +"y"xx"z"`
⇒`(2/1+4/5)xx3/(-10)=2xx3/(-10)+4/5xx3/(-10)`
⇒`((2xx5)/(1xx5)+(4xx1)/(5xx1))xx3/(-10)=3/(-5)+6/(-25)`
⇒`((10+4)/5)xx3/(-10)=(-3xx5)/(5xx5)+(-6xx1)/(5xx5)`
⇒`14/5xx3/(-10)=(-15-6)/25`
⇒`(-21)/25=(-21)/25`
APPEARS IN
RELATED QUESTIONS
Multiply:
`5/6 "and" 8/9`
Write the Reciprocal (Multiplicative Inverse) of Rational Number, Given Below:
5
Write the Reciprocal (Multiplicative Inverse) of Rational Number, Given Below:
`(-8)/(-7)`
Find the reciprocal(multiplicative inverse)of:
`(-8)/3xx13/(-7)`
Multiply the rational number, given below, by one (1):
`(-8)/13`
For the pair of rational numbers, given below, verify that the multiplication is commutative.
`(-1)/5 "and" 2/9`
For the pair of rational numbers, given below, verify that the multiplication is commutative.
`0 "and" (-12)/17`
Verify that `"x"=3/4,"y"=8/9and "z"=-5`
Name the multiplication property of rational number show below:
`(-3)/4xx(5/7xx(-8)/15)=((-3)/4xx5/7)xx(-8)/15`
`(-6)/7 = underline()/42`