Advertisements
Advertisements
Question
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
Options
0
π ℓn 2
– π ℓn 2
`(π ℓn 2)/2`
MCQ
Solution
0
Explanation:
Let I = `int_0^(π/2) sin 2x ℓn (cot x)dx`
= `int_0^(π/2) sin 2x ℓn (cos x) dx - int_0^(π/2) sin 2x ℓn (sin x) dx`
= `int_0^(π/2) sin[2(π/2 + x)] ℓn cos(π/2 + x)dx - int_0^(π/2) sin 2x ℓn (sin x) dx`
= `int_0^(π/2) sin(π + 2x) ℓn (sin x)dx - int_0^(π/2) sin 2x ℓn (sin x)dx`
= `int_0^(π/2) sin 2x ℓn (sin x)dx - int_0^(π/2) sin 2x ℓn (sin x)dx`
= 0
shaalaa.com
Is there an error in this question or solution?