Advertisements
Advertisements
Question
What is the angle between the vectors `hati - 2hatj + 3hatk` and `3hati - 2hatj + hatk`
Options
`cos^-1 (5)`
`cos^-1 (7)`
`cos^-1 5/7`
`cos^-1 7/5`
MCQ
Solution
`cos^-1 5/7`
Explanation:
Let `veca = hati - 2hatj + 3hatk` and `vecb = 3hati - 2hatj + hatk` are the given vectors and let θ be the angle between them than,
cos θ = `(veca * vecb)/(|veca||vecb|)` ......(1)
Now, `veca * vecb = (hati - 2hatj + 3hatk) * (3hati - 2hatj + hatk)`
= `(1) (3) + (-2) (-2) + (3) (1)`
= 3 + 4 + 3 = 10
`|veca| = sqrt((1)^2 + (-2)^2 + (1)^2`
= `sqrt(9 + 4 + 1)`
= `sqrt(14)`
From (1) we get,
`cos theta = (veca * vecb)/(|veca||vecb|)`
= `10/(sqrt(14) sqrt(14))`
= `10/14`
= `5/4`
∴ θ = `cos^-1 (5/7)`
shaalaa.com
Is there an error in this question or solution?