Advertisements
Advertisements
Question
What should be subtracted from 2x3 – 3x2y + 2xy2 + 3y3 to get x3 – 2x2y + 3xy2 + 4y3?
Solution
In order to get the solution, we will subtract x3 – 2x2y + 3xy2 + 4y3 from 2x3 – 3x2y + 2xy2 + 3y3
Required expression is 2x3 – 3x2y + 2xy2 + 3y3 – (x3 – 2x2y + 3xy2 + 4y3) = 2x3 – 3x2y + 2xy2 + 3y3 – x3 + 2x2y – 3xy2 – 4y3
On combining the like terms,
= 2x3 – x3 – 3x2y + 2x2y + 2xy2 – 3xy2 + 3y3 – 4y3
= x3 – x2y – xy2 – y3
So, if we subtract x3 – x2y – xy2 – y3 from 2x3 – 3x2y + 2xy2 + 3y3, then we get x3 – 2x2y + 3xy2 + 4y3.
APPEARS IN
RELATED QUESTIONS
Solve the following equation.
5m − 4 = 1
Solve:
(11m − 12n + 3p) − (9m + 7n − 8p)
Subtract: 7xyz from 17xyz
If we subtract –3x2y2 from x2y2, then we get ______.
Subtract:
3t4 – 4t3 + 2t2 – 6t + 6 from – 4t4 + 8t3 – 4t2 – 2t + 11
Subtract:
7p(3q + 7p) from 8p(2p – 7q)
Subtract the following expressions:
–4x2y – y3 from x3 + 3xy2 – x2y
Subtract the following expressions:
x3y2 + 3x2y2 – 7xy3 from x4 + y4 + 3x2y2 – xy3
Subtract 9a2 – 15a + 3 from unity.