Advertisements
Advertisements
Question
Which of the following Boolean expressions is not a tautology?
Options
`(p \implies q) ∨ (∼q \implies p)`
`(q \implies p) ∨ (∼q \implies p)`
`(p \implies ∼q) ∨ (∼q \implies p)`
`(∼p \implies q) ∨ (∼q \implies p)`
MCQ
Solution
`bb((∼p \implies q) ∨ (∼q \implies p))`
Explanation:
(1) (p `rightarrow` q) ∨ (∼q `rightarrow` p) = (∼p ∨ q) ∨ (q ∨ p)
= (∼p ∨ p) ∨ q
= t ∨ q
= t
It is tautology.
(2) (q `rightarrow` p) ∨ (∼q `rightarrow` p) = (∼q ∨ p) ∨ (q ∨ p)
= (∼q ∨ q) ∨ p
= t ∨ t
= t
It is tautology.
(3) (p `rightarrow` ∼q) ∨ (∼q `rightarrow` p) = (∼p ∨ ∼q) ∨ (q ∨ p)
= (∼p ∨ q) ∨ (∼q ∨ q)
= t ∨ t
= t
It is tautology.
(4) (∼q `rightarrow` q) ∨ (∼q `rightarrow` p) = (p ∨ q) ∨ (q ∨ p)
= (p ∨ p) ∨ (q ∨ p)
= p ∨ q
Which is not a tautology.
shaalaa.com
Tautology, Contradiction, and Contingency
Is there an error in this question or solution?