English

Why is electrical power required at all when the elevator is descending? Why should there be a limit on the number of passengers in this case? - Physics

Advertisements
Advertisements

Question

Why is electrical power required at all when the elevator is descending? Why should there be a limit on the number of passengers in this case?

Short Note

Solution

When the elevator is descending, then electric power is required to prevent it from falling freely under gravity.

Also, as the weight inside the elevator increases. its speed of descending increases. therefore, there should be a limit on the number of passengers in the elevator to prevent the elevator from descending with large velocity.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Work, Energy and Power - Exercises [Page 45]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 6 Work, Energy and Power
Exercises | Q 6.23 | Page 45

RELATED QUESTIONS

A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time t is proportional to ______.


A particle is rotated in a vertical circle by connecting it to a string of length l and keeping the other end of the string fixed. The minimum speed of the particle when the string is horizontal for which the particle will complete the circle is


You lift a suitcase from the floor and keep it on a table. The work done by you on the suitcase does not depend on

(a) the path taken by the suitcase
(b) the time taken by you in doing so
(c) the weight of the suitcase
(d) your weight


In the following figure shows two blocks A and B, each of mass of 320 g connected by a light string passing over a smooth light pulley. The horizontal surface on which the block Acan slide is smooth. Block A is attached to a spring of spring constant 40 N/m whose other end is fixed to a support 40 cm above the horizontal surface. Initially, the spring is vertical and unstretched when the system is released to move. Find the velocity of the block A at the instant it breaks off the surface below it. Take g = 10 m/s2.


One end of a spring of natural length h and spring constant k is fixed at the ground and the other is fitted with a smooth ring of mass m which is allowed to slide on a horizontal rod fixed at a height h (following figure). Initially, the spring makes an angle of 37° with the vertical when the system is released from rest. Find the speed of the ring when the spring becomes vertical.


A particle is released from height S from the surface of the Earth. At a certain height, its kinetic energy is three times its potential energy. The height from the surface of the earth and the speed of the particle at that instant are respectively ______


A body is falling freely under the action of gravity alone in vacuum. Which of the following quantities remain constant during the fall?


Two inclined frictionless tracks, one gradual and the other steep meet at A from where two stones are allowed to slide down from rest, one on each track as shown in figure.


Which of the following statement is correct?


In a shotput event an athlete throws the shotput of mass 10 kg with an initial speed of 1 ms–1 at 45° from a height 1.5 m above ground. Assuming air resistance to be negligible and acceleration due to gravity to be 10 ms–2, the kinetic energy of the shotput when it just reaches the ground will be ______.


A single conservative force acts on a body of mass 1 kg that moves along the x-axis. The potential energy U(x) is given by U (x) = 20 + (x - 2)2, where x is in meters. At x = 5.0 m the particle has a kinetic energy of 20 J, then the maximum kinetic energy of body is ______ J.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×