Advertisements
Advertisements
Question
Write the following in decimal form and say what kind of decimal expansion has:
`1/11`
Solution
Dividing 1 by 11, we have
`11)overline1.00000(0.090909 .........`
- 0
10
-00
100
-99
10
-00
100
-99
10
-00
100
-99
1
∴ `1/11` = 0.090909...
= `0.overline0.9`
Thus, the decimal expansion of `1/11` is non-terminating repeating.
APPEARS IN
RELATED QUESTIONS
Write the following in decimal form and say what kind of decimal expansion has:
`36/100`
Look at several examples of rational numbers in the form `p/q` (q≠0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
Write three numbers whose decimal expansions are non-terminating non-recurring.
Which of the following numbers can be represented as non-terminating, repeating decimals?
If `sqrt(2) = 1.4142`, then `sqrt((sqrt(2) - 1)/(sqrt(2) + 1))` is equal to ______.
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.2
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
`5.bar2`
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.2555...
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.404040...
Express the following in the form `bb(p/q)`, where p and q are integers and q ≠ 0.
`0.4bar7`