Advertisements
Advertisements
Question
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Fe_{(s)} | Fe^{2+} (0.001 M) || H^+ (1 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]
Solution
The cell reaction is as follows:
\[\ce{Fe_{(s)} + 2H^+ (1 M) -> Fe^{2+} (0.001 M) + H2 (1 bar)}\]
Hence, n = 2,
The Nernst equation for the emf of this cell will be as follows –
`"E"_"cell" = ("E"_("H"^+//1/2"H"_2)^Θ - "E"_("Fe"^(2+)//"Fe")^Θ) - 0.059/2 log_10 (["Fe"^(2+)] xx "pH"_2)/(["H"^+]^2)`
∴ `"E"_"cell" = [0 - (-0.44)] - 0.059/2 log_10 (0.001 xx 1)/(1)^2`
= `0.44 - 0.059/2 log_10 10^-3`
= `0.44 - 0.059/2 xx (-3)`
= 0.529 V
RELATED QUESTIONS
Calculate the e.m.f. of the following cell at 298 K:
Fe(s) | Fe2+ (0.001 M) | | H+ (0.01 M) | H2(g) (1 bar) | Pt(s)
Given that \[\ce{E^0_{cell}}\] = 0.44 V
[log 2 = 0.3010, log 3 = 0.4771, log 10 = 1]
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Mg_{(s)} | Mg^{2+} (0.001 M) || Cu^{2+} (0.0001 M) | Cu_{(s)}}\]
Write the Nemst equation and explain the terms involved.
Calculate the value of Ecell at 298 K for the following cell:
`(Al)/(Al^(3+)) (0.01M) || Sn^(2+) ((0.015 M))/(Sn)`
`E° _(Al^(3+))/(AI)= -1.66 " Volt and " E° _(Sn^(2+)) /(Sn) = -0.14` volt
What is the pH of HCl solution when the hydrogen gas electrode shows a potential of −0.59 V at standard temperature and pressure?
Calculate ΔrG0 and log Kc for the following cell:
\[\ce{Ni(s) + 2Ag^+(aq) -> Ni^{2+}(aq) + 2Ag(s)}\]
Given that \[\ce{E^0_{cell}}\] = 1.05 V, 1F = 96,500 C mol–1.
Calculate the emf of the following cell at 298 K:
Fe(s) | Fe2+ (0.01 M) | | H+ (1 M) | H2(g) (1 bar) Pt(s)
Given \[\ce{E^0_{cell}}\] = 0.44 V.
Calculate the value of \[\ce{E^\circ}\]cell, E cell and ΔG that can be obtained from the following cell at 298 K.
\[\ce{Al/Al^3+ _{(0.01 M)} // Sn^{2+} _{(0.015 M)}/Sn}\]
Given: \[\ce{E^\circ Al^3+/Al = -1.66 V; E^\circ\phantom{.}Sn^2+/Sn = -0.14 V}\]
Calculate the value of ΔG that can be obtained from the following cell at 298K.
`(Al)/(Al3+) (0.01M) || (Sn^(2+) (0.015M))/(Sn)`
`E^\circ (Al^(3+))/(Al) = -1.66 V; E^\circ (Sn^(2+))/(Sn) = -0.14 V`
Write the Nernst equation and emf of the following cell at 298 K:
\[\ce{Sn_{(s)} | Sn^{2+} (0.050 M) || H^+ (0.020 M) | H2_{(g)} (1 bar) | Pt_{(s)}}\]