English

Write the Value of Lim X → π Sin X X − π . -

Advertisements
Advertisements

Question

Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]

Answer in Brief

Solution

\[\lim_{x \to \pi} \left( \frac{\sin x}{x - \pi} \right)\]
LHL: 
\[ \lim_{x \to \pi^-} \left( \frac{\sin x}{x - \pi} \right)\]
\[\text{ If } x = \pi - h, \text{ then } h \to 0 . \]
\[ = \lim_{h \to 0} \left( \frac{\sin \left( \pi - h \right)}{\pi - h - \pi} \right)\]
\[ = \lim_{h \to 0} \left( \frac{\sin h}{- h} \right)\]
\[ = - 1\]
\[\text{ RHL }: \]
\[ \lim_{x \to \pi^+} \left( \frac{\sin x}{x - \pi} \right)\]
\[\text{ If } x = \pi + h, \text{ then } h \to 0 . \]
\[ = \lim_{h \to 0} \left( \frac{\sin \left( \pi + h \right)}{\pi + h - \pi} \right)\]
\[ = \lim_{h \to 0} \left( \frac{- \sin h}{h} \right)\]
\[ = - 1\]
\[ \therefore \lim_{x \to \pi} \left( \frac{\sin x}{x - \pi} \right) = - 1\]

 

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×