Advertisements
Advertisements
Question
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Options
`1/(2sqrt(2)) sin^-1 (2sqrt(2)x^2) + C`
`1/2 sin^-1 (2x) + C`
`1/sqrt(2) sin^-1 (sqrt(2)x) + C`
`1/(2sqrt(2)) sin^-1 (sqrt(2)x^2) + C`
MCQ
Fill in the Blanks
Solution
`int x/sqrt(1 - 2x^4) dx` = `underlinebb(1/(2sqrt(2)) sin^-1 (sqrt(2)x^2) + C)`.
(where c is a constant of integration)
Explanation:
Let I = `int (x dx)/sqrt(1 - 2x^4)`
= `int (x dx)/sqrt(1 - (sqrt(2)x^2)^2`
Let `sqrt(2)x^2` = t
`\implies 2sqrt(2)x dx` = dt
`\implies` x dx = `dt/(2sqrt(2))`
∴ I = `1/(2sqrt(2)) int dt/sqrt(1 - t^2)`
= `1/(2sqrt(2)) sin^-1 (t) + C`
I = `1/(2sqrt(2)) sin^-1 (sqrt(2)x^2) + C`
shaalaa.com
Is there an error in this question or solution?