Advertisements
Advertisements
Question
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
Options
`tan^-1 ((x^2 + 1)/2) + "c"`
tan-1 (x2) + c
tan-1 (2x2 - 1) + c
`tan^-1 ((x^2 - 1)/x) + "c"`
MCQ
Solution
`tan^-1 ((x^2 - 1)/x) + "c"`
Explanation:
Let I = `int (x^2 + 1)/(x^4 - x^2 + 1)`dx
`= int (1 + 1/x^2)/(x^2 - 1 + 1/x^2)`dx
`= int (1 + 1/x^2)/((x - 1/x)^2 + 1)`
put `x - 1/x` = t
`(1 + 1/x^2)`dx = dt
`therefore "I" = int "dt"/("t"^2 + 1) = tan^-1 ("t") + "c"`
`= tan^-1 (x - 1/x) + "c"`
`= tan^-1 ((x^2 - 1)/x)`+ c
shaalaa.com
Is there an error in this question or solution?