Advertisements
Advertisements
Question
`int sqrt(x^2 - a^2)/x dx` = ______.
Options
`sqrt(x^2 - a^2) - acos^-1(a/x) + c`
`xsqrt(x^2 - a^2) - 1/atan^-1(x/a) + c`
`sqrt(x^2 - a^2) + asec^-1(x/a) + c`
`sqrt(x^2 - a^2) + 1/x sec^-1 (x) + c`
MCQ
Fill in the Blanks
Solution
`int sqrt(x^2 - a^2)/x dx` = `underlinebb(sqrt(x^2 - a^2) - a cos^-1(a/x) + c)`.
Explanation:
Let I = `int sqrt(x^2 - a^2)/x dx`
Put x = a secθ
`\implies` dx = a secθ tanθ dθ
`\implies I = int sqrt(a^2(sec^2 θ - 1))/(a sec θ). a sec θ tan θ dθ`
= `int a tan^2θ.dθ` = `aint(sec^2θ - 1)dθ`
= a (tanθ – θ) + c ...`(∵ int sec^2x dx = tanx)`
= `asqrt(sec^2θ - a) - a θ + c`
= `asqrt((x^2/a^2) - a) - a sec^-1(x/a) + c` ...`(∵ sec θ = x/a)`
= `sqrt(x^2 - a^2) - a sec^-1(x/a) + c`.
= `sqrt(x^2 - a^2) - a cos^-1(a/x) + c`.
shaalaa.com
Is there an error in this question or solution?