Advertisements
Advertisements
Question
x3 − 3x2 − 9x − 5
Solution
Let `f(x) = x^3 - 3x^2 - 9x -5 ` be the given polynomial.
Now, putting x = 1,we get
`f(-1) = (-1)^3 -3(-1)^ -9(-1) - 5`
`=-1 -3 +9 -5 = -9 +9 = 0`
Therefore, (x + 1)is a factor of polynomial f(x).
Now,
`f(x) = x^2 (x+1) -4x(x+1) -5(x +1)`
` = (x+1){x^2 -4x -5}`
` =(x+1){x^2 - 5x + x -5}`
` = (x+1)(x+1)( x-5)`
Hence (x+1) , (x+1) and (x - 5) are the factors of polynomial f(x) .
APPEARS IN
RELATED QUESTIONS
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
`h(x)=-3x+1/2`
f(x) = x4 − 3x2 + 4, g(x) = x − 2
Find α and β, if x + 1 and x + 2 are factors of x3 + 3x2 − 2αx + β.
If \[x = \frac{1}{2}\] is a zero of the polynomial f(x) = 8x3 + ax2 − 4x + 2, find the value of a.
When x3 − 2x2 + ax − b is divided by x2 − 2x − 3, the remainder is x − 6. The values of a and b are respectively
If (3x − 1)7 = a7x7 + a6x6 + a5x5 +...+ a1x + a0, then a7 + a5 + ...+a1 + a0 =
Factorise the following:
t² + 72 – 17t
Factorise the following:
2a2 + 9a + 10
Factorise the following:
6x2 + 16xy + 8y2
Factorise:
x3 + x2 – 4x – 4