Advertisements
Advertisements
Question
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
Options
0
`1/2`
None of these
1
MCQ
Fill in the Blanks
Solution
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to `underline(1/2)`.
Explanation:
`= lim_("x"-> 0) ("cosec x - cot x")/"x"`
`= lim_("x"-> 0) (1 - "cos x")/("x sin x")`
`= lim _ ("x" -> 0) ((1 - "cos x")( 1 = "cos x"))/("x sin x" (1 + "cos x"))`
`= lim_("x" -> 0) "sin x"/"x". 1/(1 + "cos x")`
` = 1/2`
shaalaa.com
Is there an error in this question or solution?