Advertisements
Advertisements
Question
`int (xdx)/((x - 1)(x - 2))` equals
Options
`log |(x - 1)^2/(x - 2)| + c`
`log |(x - 2)^2/(x - 1)| + c`
`log |(x - 1)^2/(x - 2)|`
`log|(x - 1)(x - 2) + c`
MCQ
Solution
`log |(x - 2)^2/(x - 1)| + c`
Explanation:
`x/((x - 1)(x - 2)) = 1/(x - 1) + 2/(x - 2)`
`x = A(x - 2) + B(x - 1)`
Put `x = 1, 1 = A(1 - 2) = - A` ∴ `A = - 1`
Put `x = 2, 2 = B(2 - 1) = B` ∴ `B = 2`
∴ `x/((x - 1)(x - 2)) = 1/(x - 1) + 2/(x - 2)`
∴ `int (xdx)/((x - 1)(x - 2)) = - int 1/(x - 1) dx + 2 int 2/(x - 2) dx`
= `- log |x - 1| + 2 log |x - 2| + c`
= `log |(x + 2)^2/(x - 1)| + c`
shaalaa.com
Is there an error in this question or solution?