English

Xx∫23xx2-1 dx = ____________. -

Advertisements
Advertisements

Question

`int_2^3 "x"/("x"^2 - 1)` dx = ____________.

Options

  • `(1/3) log (8/3)`

  • `(-1/3) log (8/3)`

  • `(1/2) log (8/3)`

  • `(-1/2) log (8/3)`

MCQ
Fill in the Blanks

Solution

`int_2^3 "x"/("x"^2 - 1)` dx = `underline((1/2) log (8/3))`.

Explanation:

We have, l = `int_2^3 "x"/("x"^2 - 1)` dx

Put, x2 − 1 = t = 2x dx = dt = xdx = `"dt"/2`

When, x = 2, t = 3 and x = 3, t = 8

∴ l = `1/2 int_3^8 "dt"/"t"`

l = `1/2 [log "t"]_3^8`

= `1/2 [log 8 - log 3]`

l = `1/2 log (8/3)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×