Advertisements
Advertisements
Question
y = {x(x - 3)}2 increases for all values of x lying in the interval.
Options
0 < x < `3/2`
0 < x < ∞
-∞ < x < 0
1 < x < 3
MCQ
Fill in the Blanks
Solution
`underline(0 < x < 3/2)`
Explanation:
y = {x(x - 3)}2
⇒ y = x2(x - 3)2
∴ `dy/dx = 2x(x - 3)^2 + 2(x - 3)x^2`
= 2x(x - 3)[x - 3 + x]
= 2x(x - 3)(2x - 3)
For y to be increasing, `dy/dx > 0`
⇒ 2x(x - 3)(2x - 3) > 0
⇒ x(x - 3)(2x - 3) > 0 ⇒ `x ∈ (0, 3/2)`
shaalaa.com
Differentiation
Is there an error in this question or solution?