हिंदी
Karnataka Board PUCPUC Science 2nd PUC Class 12

Variance of a Random Variable

Advertisements

Topics

Definition

Let X be a random variable whose possible values x1,x2,...,xn occur with probabilities p(x1),p(x2),...,p(xn) respectively.
Let µ = E (X) be the mean of X. The variance of X, denoted by Var (X) or σx2  is  defined as 
σx2=Var(X)=i=1n(xi-μ)2p(xi)
or equivalently σx2 = E(X-μ)2
The non-negative number 

σx=Var(X)=i=1n(xi-μ)2p(xi)

is called the standard deviation of the  random variable X. 
Another formula to find the variance of a random variable. We know that, 

Var (X) = i=1n(xi-μ)2p(xi)

=i=1n(xi2+μ2-2μxi)p(xi)

=i=1n xi2p(xi)+i=1nμ2p(xi)-i=1n 2μxip(xi)

=i=1n xi2p(xi)+μ2i=1np(xi)-2μ i=1n xip(xi)

=i=1nxi2p(xi)+μ2-2μ2[sincei=1np(xi)=1andμ=i=1nxip(xi)]

=i=1n xi2p(xi)-μ2

or Var (X) = i=1n xi2p(xi)-(i=1n xip(xi))2

orVar(X)=E(x2)-[E(X)]2,where E(X2)=i=1n xi2p(xi)

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisements
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.