हिंदी

∫0π2log(tanx)dx = ______ -

Advertisements
Advertisements

प्रश्न

`int_0^{pi/2} log(tanx)dx` = ______

विकल्प

  • 0

  • 1

  • `pi/4`

  • `pi/2`

MCQ
रिक्त स्थान भरें

उत्तर

`int_0^{pi/2} log(tanx)dx` = 0

Explanation:

Let I = `int_0^{pi/2} log(tanx)dx` ...................(i)

∴ I = `int_0^{pi/2} log[tan(pi/2 - x)]dx` ..............`[∵ int_0^a f(x)dx = int_0^a f(a - x)dx]`

∴ I = `int_0^{pi/2} log(cotx)dx` ...................(ii)

Adding (i) and (ii), we get

2I = `int_0^{pi/2}[log(tanx) + log(cotx)]dx`

= `int_0^{pi/2}log(tanx.cotx)dx`

= `int_0^{pi/2} (log1)dx`

= `int_0^{pi/2} 0 dx`

∴ I = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×