Advertisements
Advertisements
Question
`int_0^{pi/2} log(tanx)dx` = ______
Options
0
1
`pi/4`
`pi/2`
MCQ
Fill in the Blanks
Solution
`int_0^{pi/2} log(tanx)dx` = 0
Explanation:
Let I = `int_0^{pi/2} log(tanx)dx` ...................(i)
∴ I = `int_0^{pi/2} log[tan(pi/2 - x)]dx` ..............`[∵ int_0^a f(x)dx = int_0^a f(a - x)dx]`
∴ I = `int_0^{pi/2} log(cotx)dx` ...................(ii)
Adding (i) and (ii), we get
2I = `int_0^{pi/2}[log(tanx) + log(cotx)]dx`
= `int_0^{pi/2}log(tanx.cotx)dx`
= `int_0^{pi/2} (log1)dx`
= `int_0^{pi/2} 0 dx`
∴ I = 0
shaalaa.com
Is there an error in this question or solution?