Advertisements
Advertisements
प्रश्न
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
विकल्प
2
1
0
4
MCQ
उत्तर
0
Explanation:
We have,
I = `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx
I = `int_0^1 tan^-1 ((2 (1 - x) - 1)/(1 + (1 - x) - (1 - x)^2))`dx ...`[because int_0^"a" "f"(x) "dx" = int_0^"a" "f"("a - x") "dx"]`
I = `int_0^1 tan^-1 ((1 - 2x)/(1 + x - x^2))`dx
I = `int_0^1 - tan^-1 ((2x -1)/(1 + x - x^2))`dx
2I = 0
I = 0
shaalaa.com
Fundamental Theorem of Integral Calculus
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?