Advertisements
Advertisements
Question
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Options
2
1
0
4
MCQ
Solution
0
Explanation:
We have,
I = `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx
I = `int_0^1 tan^-1 ((2 (1 - x) - 1)/(1 + (1 - x) - (1 - x)^2))`dx ...`[because int_0^"a" "f"(x) "dx" = int_0^"a" "f"("a - x") "dx"]`
I = `int_0^1 tan^-1 ((1 - 2x)/(1 + x - x^2))`dx
I = `int_0^1 - tan^-1 ((2x -1)/(1 + x - x^2))`dx
2I = 0
I = 0
shaalaa.com
Fundamental Theorem of Integral Calculus
Is there an error in this question or solution?