Advertisements
Advertisements
प्रश्न
12, 16, 20, 24, ...... Find 25th term of this A.P.
उत्तर
The given A.P. is 12, 16, 20, 24, ......
Here, a = 12, d = 16 – 12 = 4
Since tn = a + (n – 1)d
t25 = 12 + (25 – 1)(4)
= 12 + 24(4)
= 12 + 96
= 108
∴ 25th term of the given A.P. is 108.
APPEARS IN
संबंधित प्रश्न
If the 9th term of an A.P. is zero, then prove that 29th term is double of 19th term.
Find the sum of the following arithmetic series:
`7 + 10 1/2 + 14 + ....... + 84`
Find the sum of the following arithmetic series:
(-5)+(-8)+(-11)+...+(-230)
Given Arithmetic Progression 12, 16, 20, 24, . . . Find the 24th term of this progression.
Find the 19th term of the following A.P.:
7, 13, 19, 25, ...
Select the correct alternative and write it.
What is the sum of first n natural numbers ?
Select the correct alternative and write it.
If a share is at premium, then -
For a given A.P. a = 3.5, d = 0, then tn = _______.
If the sum of first n terms of an AP is n2, then find its 10th term.
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Find t5 if a = 3 आणि d = −3
Decide whether the given sequence 24, 17, 10, 3, ...... is an A.P.? If yes find its common term (tn)
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
Decide whether 301 is term of given sequence 5, 11, 17, 23, .....
Activity :- Here, d = `square`, therefore this sequence is an A.P.
a = 5, d = `square`
Let nth term of this A.P. be 301
tn = a + (n – 1) `square`
301 = 5 + (n – 1) × `square`
301 = 6n – 1
n = `302/6` = `square`
But n is not positive integer.
Therefore, 301 is `square` the term of sequence 5, 11, 17, 23, ......
If tn = 2n – 5 is the nth term of an A.P., then find its first five terms
The nth term of an A.P. 5, 8, 11, 14, ...... is 68. Find n = ?
If p - 1, p + 3, 3p - 1 are in AP, then p is equal to ______.
Find a and b so that the numbers a, 7, b, 23 are in A.P.
Write the next two terms of the A.P.: `sqrt(27), sqrt(48), sqrt(75)`......