Advertisements
Advertisements
प्रश्न
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
उत्तर
Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) d
∴ 95 = 10 + (n – 1) × 5
∴ 95 – 10 = (n – 1) × 5
∴ 85 = (n – 1) × 5
∴ `85/5` = (n – 1)
∴ 17 = (n – 1)
∴ n = 17 + 1
Therefore n = 18
There are 18 two-digit numbers divisible by 5
संबंधित प्रश्न
If the 9th term of an A.P. is zero, then prove that 29th term is double of 19th term.
Find the sum of the following arithmetic series:
34 + 32 + 30 +...+10
Find the sum of the following arithmetic series:
(-5)+(-8)+(-11)+...+(-230)
Select the correct alternative and write it.
What is the sum of first n natural numbers ?
Select the correct alternative and write it.
If a share is at premium, then -
For a given A.P. a = 3.5, d = 0, then tn = _______.
Find the 23rd term of the following A.P.: 9, 4,-1,-6,-11.
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Find t5 if a = 3 आणि d = −3
Decide whether 301 is term of given sequence 5, 11, 17, 23, .....
Activity :- Here, d = `square`, therefore this sequence is an A.P.
a = 5, d = `square`
Let nth term of this A.P. be 301
tn = a + (n – 1) `square`
301 = 5 + (n – 1) × `square`
301 = 6n – 1
n = `302/6` = `square`
But n is not positive integer.
Therefore, 301 is `square` the term of sequence 5, 11, 17, 23, ......
12, 16, 20, 24, ...... Find 25th term of this A.P.
If tn = 2n – 5 is the nth term of an A.P., then find its first five terms
The nth term of an A.P. 5, 8, 11, 14, ...... is 68. Find n = ?
If p - 1, p + 3, 3p - 1 are in AP, then p is equal to ______.
In an A.P. if the sum of third and seventh term is zero. Find its 5th term.
Write the next two terms of the A.P.: `sqrt(27), sqrt(48), sqrt(75)`......