हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

4 सेमी बाजू असलेल्या समभुज त्रिकोणाची उंची किती? - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

4 सेमी बाजू असलेल्या समभुज त्रिकोणाची उंची किती? 

योग

उत्तर

∆ABC हा समभुज त्रिकोण आहे, असे मानू.

∴ ∠B = 60° ........[समभुज त्रिकोणाचा कोन]

समजा, AD ⊥ BC, B – D – C.

∆ABD मध्ये, ∠B = 60°, ∠ADB = 90°

∴ ∠BAD = 30° …....[त्रिकोणाचा उर्वरित कोन]

∴ ∆ABD हा 30° – 60° – 90° त्रिकोण आहे.

∴ AD = `sqrt3/2"AB"` ..............[60° कोनासमोरील बाजू]

= `sqrt3/2 xx 4`

= `2sqrt3` एकक

∴ दिलेल्या समभुज त्रिकोणाची उंची `2sqrt3` एकक आहे. 

shaalaa.com
कोनांची मापे 30°-60°-90° असणाऱ्या त्रिकोणाचा गुणधर्म
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: पयथागोरसचे प्रमेर - Q १ (ब)

APPEARS IN

एससीईआरटी महाराष्ट्र Geometry (Mathematics 2) [Marathi] 10 Standard SSC
अध्याय 2 पयथागोरसचे प्रमेर
Q १ (ब) | Q ५)

संबंधित प्रश्न

ΔRST मध्ये, ∠S = 90°, ∠T = 30°, RT = 12 सेमी तर RS व ST काढा.


एका समभुज त्रिकोणाची उंची `sqrt(3)` सेमी आहे, तर त्या त्रिकोणाच्या बाजूची लांबी व परिमिती काढा.


ΔABC हा समभुज त्रिकोण आहे. पाया BC वर P बिंदू असा आहे की PC = `1/ 3` BC, जर AB = 6 सेमी तर AP काढा.


पुढील प्रत्येक उपप्रश्नासाठी 4 पर्यायी उत्तरे दिली आहेत. त्यांपैकी अचूक उत्तराचा योग्य पर्याय निवडून त्याचे वर्णाक्षर लिहा.

∆ABC मध्ये, AB = `6sqrt3` सेमी, AC = 12 सेमी आणि BC = 6 सेमी, तर ∠A चे माप किती?


सोबतच्या आकृतीत, ∆ABC मध्ये, AB ⊥ BC, AB = BC, तर ∠A चे माप किती? 

 


सोबतच्या आकृतीत, ∆ABC मध्ये, AB = BC, AC = `2sqrt2`, ∠ABC = 90°. तर AB ची लांबी किती? 


बाजूच्या आकृतीवरून जर AQ = 8 सेमी, तर AB ची लांबी काढा. 


सोबतच्या आकृतीवरून, जर AC = 12 सेमी, तर AB ची लांबी काढण्यासाठी खालील कृती पूर्ण करा.

 

कृती: सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠ACB = 30° यावरून,

∠BAC = `square`

म्हणजेच, ∆ABC हा 30° – 60° – 90° त्रिकोण आहे.

∆ABC मध्ये 30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,

AB = `1/2"AC"` व `square` = `sqrt3/2"AC"`.

∴ `square` = `1/2 xx 12` व BC = `sqrt3/2 xx 12`

∴ `square` = 6 व BC = `6sqrt3.`


सोबतच्या आकृतीत, ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° AC = 14, तर AB व BC काढण्यासाठी खालील कृती पूर्ण करा.

कृती: ∆ABC मध्ये, ∠ABC = 90°, ∠CAB = 30° यावरून, ∠BCA = `square`

30° – 60° – 90° त्रिकोणाच्या प्रमेयानुसार,

`square = 1/2 "AC" व  square = sqrt3/2 "AC"`.

∴ BC = `1/2 xx square` व AB = `sqrt3/2 xx 14`

BC = 7 व AB = `7sqrt3`. 


सोबतच्या आकृतीत, LK = `6sqrt2` तर MK, ML, MN काढा.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×