हिंदी

A(5, 4), B(−3, −2) and C(1, −8) are the vertices of a triangle ABC. Find: the slope of the altitude of AB, the slope of the median AD and the slope of the line parallel to AC. - Mathematics

Advertisements
Advertisements

प्रश्न

A(5, 4), B(−3, −2) and C(1, −8) are the vertices of a triangle ABC. Find:

  1. the slope of the altitude of AB,
  2. the slope of the median AD and
  3. the slope of the line parallel to AC.
योग

उत्तर

Given, A(5, 4), B(−3, −2) and C(1, −8) are the vertices of a triangle ABC.

i. Slope of AB = `(-2 - 4)/(-3 - 5) = (-6)/(-8) = 3/4`

Slope of the altitude of AB = `(-1)/"slope of AB" = (-1)/(3/4) = (-4)/3`

ii. Since, D is the mid-point of BC.

Co-ordinates of point D are `((-3 + 1)/2, (-2 - 8)/2) = (-1, -5)`

Slope of AD = `(-5 - 4)/(-1 - 5) = (-9)/(-6) = 3/2`

iii. Slope of AC = `(-8 - 4)/(1 - 5) = (-12)/(-4) = 3`

Slope of line parallel to AC = Slope of AC = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Equation of a Line - Exercise 14 (B) [पृष्ठ १९१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 14 Equation of a Line
Exercise 14 (B) | Q 15 | पृष्ठ १९१

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×